Given
,
`int sqrt(1-x^2)/x^4 dx`
By applying Integration by
parts we can solve the given integral
so,
let `u=
sqrt(1-x^2)` `,v' = (1/x^4) `
=>` u' = (sqrt(1-x^2) )'`
=> =`d/dx (sqrt(1-x^2)) `
let `t=1-x^2 `
so,
`d/dx (sqrt(1-x^2))`
=`d/dx
(sqrt(t))`
= `d/(dt) sqrt(t) * d/dx (t)` [as `d/dx f(t) = d/(dt) f(t)
(dt)/dx` ]
= `[(1/2)t^((1/2)-1) ]*(d/dx (1-x^2))`
=
`[(1/2)t^(-1/2)]*(-2x)`
=`[1/(2sqrt(1-x^2 ))]*(-2x)`
=`-x/sqrt(1-x^2)`
so, `u' = -x/sqrt(1-x^2)` and as ` v'=(1/x^4)`
so
`v = int 1/x^4 dx `
= `int x^(-4) dx`
= `(x^(-4+1))/(-4+1) `
=`(x^(-3))/(-3)`
=
`-(1/(3x^3))`
so , let us see the values
altogether.
`u= sqrt(1-x^2) ,u' = -x/sqrt(1-x^2)` and` v' = (1/x^4)
,v=-(1/(3x^3))`
Now ,by applying the integration by
parts `int uv' ` is given as
`int uv' = uv - int u'v`
then,
`int sqrt(1-x^2)/x^4 dx `
= `(sqrt(1-x^2))
(-(1/(3x^3))) - int (-x/sqrt(1-x^2))(-(1/(3x^3))) dx `
= `(sqrt(1-x^2))
(-(1/(3x^3))) -(-...
No comments:
Post a Comment