We
have to find the value of x for `2cosx+1=0` in the interval `[0,2\pi]`
So,
`2cosx+1=0`
In other words,
`2cosx=-1`
`cosx=\frac{-1}{2}`
The solution will be of the
form:
`x=\pm cos^{-1}(\frac{-1}{2})+2\pi n` where n=0,1,2,. . .
For example, `x=\pm \frac{2\pi}{3} +2\pi n , \ n=0,1,2,...`
When
,
`n=0 : x=\pm \frac{2\pi}{3}`
`n=1:\ x=
\frac{2\pi}{3}+2\pi = \frac{8\pi}{3}`
or ,
`x=\frac{-2\pi}{3}+2\pi=\frac{4\pi}{3}`
However, we have to find the angle in
the interval `[0,2\pi]`
As a result, the answer is:
`x=\frac{2\pi}{3} \ and \ x=\frac{4\pi}{3}`
No comments:
Post a Comment