Saturday, 27 February 2010

Where on the line x - y = 8 does the perpendicular from (2, 1) intersect.

From the given
line equation: x-y=8, express it in slope-intercept form (y=mx+b).

x-y
=8

  +y   +y

---------------

x     =
 8+y

   -8   -8 

----------------

x -8
=y            Or y = 1x-8 where slope  `m_1 = 1.`

Note that perpendicular
lines follows` m_2 = -1/m_1`

Then `m_2=- 1/(-1)=-1`


Determine the other line equation using `m_2=-1` and that will pass through point
(2,1).

Plug-in the values in y=mx+b

                     
       1 = (-1)(2)+b

                              1= -2 +b


                              +2  +2

                             
------------------

                              3 =b

Line
equation:  y=-1x+3 or x+y =3  based from `m_2=-1` and b =3

the two lines are
x-y=8 and x+y =3.

Applying elimination method to solve for x. 


         x-y=8           Add the to equations.

    +  x+y
=3

      -------------

        2x   = 11        Cancels
out y's since -y+y = 0.

       `(2x)/2=11/2`           Divide both sides by 2
to isolate x.

        `x = 11/2`

To solve for y, subtract
the equations as:

        x -y = 8          Or            x -y =8


-     ( x +y =3)  ------->  +  (-x -y = -3 ).    Subtraction rules of
signs. 

   -----------------            

           -2y =
5

            `(-2y)/-2=5/2 `      Divide both sides by -2 to isolate
y.

                `y = - 5/2`

Intersection point:  `
(11/2, - 5/2)`

This is the same as (5.5, -2.5)

No comments:

Post a Comment

To what degree were the U.S., Great Britain, Germany, the USSR, and Japan successful in regards to their efforts in economic mobilization during the...

This is an enormous question that can't really be answered fully in this small space. But a few generalizations can be made. Bo...